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Abstract

In this paper, we consider the scattering of the time-harmonic plane wave by a protruding cavity embedded in the PEC
ground plane. An artificial boundary condition is introduced on a semicircle enclosing the cavity that couples the fields
from the infinite exterior domain to those inside. Variational formulations for the TM and TE polarizations are derived
and existence and uniqueness of weak solutions are established. Finite element error analysis is also performed. Numerical
experiments demonstrate the efficiency and accuracy of the method.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The analysis of the electromagnetic scattering properties of cavities in a conducting ground plane is of high
interest to the engineering community. Applications include the design of cavity-backed conformal antennas
for civil and military use, and the characterization of radar cross-section (RCS) of vehicles with grooves.

Time-harmonic analysis of cavity-backed apertures with penetrable material filling the cavity interior has
been examined by numerous researchers in the engineering community. They include high and low frequency
methods [12,16,6], the method of moments [20,21], and hybrid methods [15,18,14,13,17]. Mathematical treat-
ment of scattering problems involving cavities can be found in [5,3,4,19]. It is a common assumption that the
cavity opening coincides with the aperture on an infinite ground plane, and hence simplifying the modelling of
the exterior (to the cavity) domain. This limits the application of these methods since many cavity openings are
not planar. This paper aims to develop a solid mathematical technique that is capable of characterizing the
scattering by overfilled cavities in the frequency domain.

In particular, we seek to determine the fields scattered by the protruding cavity upon a given incident wave.
Our method decomposes the entire solution domain to two sub-domains via an artificial semicircle enclosing
the cavity: the infinite upper half plane over the perfect electrically conducting (PEC) ground plane exterior to
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the semicircle, and the cavity plus the interior region. The problem is solved exactly in the infinite sub-domain,
while the other is solved using finite elements. The two regions are coupled over the semicircle via the intro-
duction of a boundary operator exploiting the field continuity over material interfaces. This is an important
departure from the author�s previous work, in that the fields above the aperture are not represented using a
half-space Green�s function. Rather, a modal representation is used to express the fields in the upper half space
less a semicircle (2D) or hemisphere (3D) centered on the aperture and enclosing the inhomogeneities above it.
In this way, cavity-backed antennas with dielectric lenses above the ground plane can be rigorously analyzed.

The idea of using a pseudo-differential operator to reduce the infinite computational domain to a finite one
goes back at least to the classic work of Engquist and Majda [8]. A sequence of boundary conditions was
developed in [1] which provided increasingly accurate approximations to an elliptic problem of infinite
domain. Various expansions for symmetric geometries are used to generate Dirichlet to Newmann boundary
operators in [9–11]. For more detailed analysis of higher order boundary conditions for wave equations the
reader is referred to a recent paper by Diaz and Joly [7] and references therein.

2. Problem setting

Let X � R2 be the cross-section of a z-invariant cavity (or trough) in the infinite ground plane such that its
fillings of relative permittivity er P 1 protrude above the ground plane. Denote S as the cavity wall, C the cav-
ity aperture so that oX = S [ C. The infinite ground plane excluding the cavity opening is denoted as Cext, the
infinite homogenous region above the cavity as U ¼ R2

þ n X. Furthermore, let BR be a semicircle of radius R
large enough to completely enclose the overfilled portion of the cavity. We denote the region bounded by BR

and the cavity wall S as XR. Hence, this region XR consists of the cavity and the homogeneous part between
BR and C (see Fig. 1). Let UR be the homogeneous region outside of XR, that is, UR = {(r,h) : r > R,
0 < h < p}.

Given the incident electromagnetic wave (Ei,Hi) impinging on the protruding cavity, we wish to determine
the resulting scattered fields (Es,Hs).

Due to the uniformity in the z-axis, the scattering problem can be decomposed into two fundamental polar-
izations: transverse magnetic (TM) and transverse electric (TE). Its solution then can be expressed as a linear
combination of the solutions to TM and TE problems.

In the TM polarization, the magnetic field H is transverse to the z-axis so that E and H are of the form
Fig. 1.
denote
E ¼ ð0; 0;EzÞ; H ¼ ðH x;H y ; 0Þ.

In this case, the nonzero component of the total field satisfies the following problem:
ðTMÞ DEz þ k2erEz ¼ 0 in X [U;

Ez ¼ 0 on S [ Cext;

(

Cavity geometry, showing cavity interior X and conducting boundary S [ C. The conducting ground plane less the aperture is
d Cext, and BR is an origin-centered semicircle surrounded by free space.
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where er = e/e0 is the relative electric permittivity, and k is the free space wave number. Adapting the e�jwt

convention, we assume Re e(x) P a > 0, Im e(x) 6 0 and e(x) 2 L1(X). The homogeneous region U above
the protruding cavity is assumed to be air and hence its permittivity is er = 1. In U, the total field can be
decomposed as Ez ¼ Ei

z þ Er
z þ Es

z where Ei
z is the incident field, Er

z the reflected field, and Es
z the scattered field.

The reflected field exists due to the presence of the infinite ground plane. The incident and reflected electric
fields satisfy
Ei
z þ Er

z ¼ 0 on Cext � fðx; yÞ : y ¼ 0g.

The scattered field Es

z is governed by the following:
ðTMsÞ
DEs

z þ k2Es
z ¼ 0 in U;

Es
z ¼ Ez � Ei

z � Er
z on C;

Es
z ¼ 0 on Cext

8><
>:
and the radiation condition
lim
r!1

ffiffi
r
p oEs

z

or
þ ikEs

z

� �
¼ 0. ð2:1Þ
The components of H can be obtained in terms of Ez and its partial derivatives by using Maxwell�s equations.
Similarly, in the TE polarization, the electric field E is transverse to the z-axis and hence,
E ¼ ðEx;Ey ; 0Þ; H ¼ ð0; 0;H zÞ.

The nonzero component of the total magnetic field, also denoted by H, satisfies the following problem:
ðTEÞ
r � 1

er
rH z

� �
þ k2H z ¼ 0 in X [U;

oHz
on ¼ 0 on S [ Cext.

8<
:

In U, the total magnetic field can be decomposed into H z ¼ H i
z þ H r

z þ H s
z, where
oH i
z

oy
þ oH r

z

oy
¼ 0 on fðx; yÞ : y ¼ 0g.
The scattered field solves
ðTEsÞ
DH s

z þ k2H s
z ¼ 0 in U;

oH s
z

on ¼ 0 on Cext;

(

where o
on is the normal derivative on C. The scattered magnetic field also satisfies the same radiation condition

defined in (2.1). Again, the components of E can be obtained in terms of Hz and its partial derivatives by using
Maxwell�s equations.
3. TM polarization

In what follows, we shall denote u = Ez for simplicity. The scattered field us satisfies the following exterior

problem:
Dus þ k2us ¼ 0 in UR;

usðR; hÞ ¼ gðhÞ on BR;

us ¼ 0 on Cext

8><
>: ð3:1Þ
and the radiation condition
lim
r!1

ffiffi
r
p ous

or
þ ikus

� �
¼ 0. ð3:2Þ
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In polar coordinates, the Helmholtz equation in (3.1) becomes
o2us

or2
þ 1

r
ous

or
þ 1

r2

o2us

oh2
þ k2us ¼ 0. ð3:3Þ
By writing
usðr; hÞ ¼
X1
n¼0

us
nðrÞðan cos nhþ bn sin nhÞ
and substituting it in (3.3) we get
o
2us

n

or2
þ 1

r
ous

n

or
þ k2 � n2

r2

� �
us

n ¼ 0.
The radiation condition then gives
usðr; hÞ ¼
X1
n¼0

H ð2Þn ðkrÞðan cos nhþ bn sin nhÞ.
The PEC boundary conditions
0 ¼ usðr; 0Þ ¼
X1
n¼0

anH ð2Þn ðkrÞ; r P R;

0 ¼ usðr; pÞ ¼
X1
n¼0

ð�1ÞanH ð2Þn ðkrÞ; r P R;
further imply that an = 0 for all n. Hence,
usðr; hÞ ¼
X1
n¼1

bnH ð2Þn ðkrÞ sin nh. ð3:4Þ
Letting r = R and imploring the orthogonality of the sine functions yield
bn ¼
2

pH ð2Þn ðkRÞ

Z p

0

gðhÞ sin nhdh. ð3:5Þ
By taking the partial derivative of us with respect to r, we get
ous

or
¼ 2k

p

X1
n¼1

H ð2Þ
0

n ðkrÞ
H ð2Þn ðkRÞ

sin nh
Z p

0

gðhÞ sin nhdh � TgðhÞ ð3:6Þ
for all g 2 H 1=2ðBRÞ.
The Sobolev spaces H 1=2ðBRÞ and H�1=2ðBRÞ are defined as follows:
H 1=2ðBRÞ ¼ / :
X1
m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
j/mj

2
<1

( )
; ð3:7Þ

H�1=2ðBRÞ ¼ / :
X1
m¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p j/mj

2
<1

( )
; ð3:8Þ
where
/m ¼ /c
m þ i/s

m ¼
2

p

Z p

0

/ðhÞeimh dh.
Let TR be the restriction of T to BR so that T R : H 1=2ðBRÞ ! H�1=2ðBRÞ can be defined by
T RwðhÞ ¼ 2k
p

X1
n¼1

H ð2Þ
0

n ðkRÞ
H ð2Þn ðkRÞ

sin nh
Z p

0

wðhÞ sin nhdh ¼ k
X1
n¼1

H ð2Þ
0

n ðkRÞ
H ð2Þn ðkRÞ

sin nhws
n

for all w 2 H 1=2ðBRÞ.
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Lemma 3.1. The operator T R : H
1
2ðBRÞ ! H�

1
2ðBRÞ is continuous.

Proof. We denote
Bn ¼
H 0ð2Þn ðkRÞ
H ð2Þn ðkRÞ

. ð3:9Þ
Then, see [2],
jBnj ¼
K 0nðikRÞ
KnðikRÞ

����
����.
By the formula
zK 0nðzÞ ¼ �nKnðzÞ � zKn�1ðzÞ;

we deduce
K 0nðikRÞ
KnðikRÞ

����
���� ¼ n

ix
þ Kn�1ðixÞ

KnðixÞ

����
���� 6 n

x
þ 1;
where x = kR. Hence jBnj 6 C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1
p

for some C > 0. By definition, we have
jhT Rw;wij ¼
Z

BR

k
X1

1

Bn sin nhws
n
�wdl

�����
����� ¼

Z p

0

k
X1

1

Bn sin nhws
n
�wðhÞRdh

�����
����� ¼ x

X1
1

Bnws
n

Z p

0

�wðhÞ sin nhdh

�����
�����

¼ xp
2

X1
1

Bnws
n
�w

s

n

�����
����� 6 xp

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
1

jBnjjws
nj

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
1

jBnjjws
nj

2

s

6 C
X1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
jws

nj
2

 !1=2 X1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
jws

nj
2

 !1=2

¼ CkwkH1=2ðBRÞ � kwkH1=2ðBRÞ.
Thus we have
kT RwkH�1=2ðBRÞ ¼ sup
w2H1=2ðBRÞ

jhT Rw;wij
kwkH1=2ðBRÞ

6 CkwkH1=2ðBRÞ. �
On the semicircle BR, where r = R, the normal derivative of the total electric field can be decomposed as the
following:
ou
or
¼ oui

or
þ our

or
þ ous

or
¼ oui

or
þ our

or
þ T RðusÞ � f ðhÞ þ T RðuÞ � T Rðui þ urÞ.
By field continuity we can now reduce the problem (TM) defined in the infinite domain X [U to the following
interior problem:
Duþ k2eru ¼ 0 in XR;
ou
or � T RðuÞ ¼ f ðhÞ � T Rðui þ urÞ on BR.

(
ð3:10Þ
In what follows, (3.10) will be solved by a variational method.
3.1. Variational formulation

Define the sub-space V of L2(XR) by
V ¼ fv 2 H 1ðXRÞ : vj ¼ 0g
S
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equipped with the H1-norm
kukV ¼ kukH1ðXRÞ.
The variational formulation of (3.10) is to find u 2 V such that
bTMðu; vÞ ¼ F ðvÞ for all v 2 V ; ð3:11Þ

where
bTMðu; vÞ ¼
Z

XR

ðru � rv� k2eruvÞdxdy �
Z
BR

T RðuÞv dl

¼
Z

XR

ðru � rv� k2eruvÞdxdy �
Z p

0

T RðuÞvR dh; ð3:12Þ

F ðvÞ ¼
Z
BR

½f ðhÞ � T Rðui þ urÞ�vdl

¼
Z p

0

½f ðhÞ � T Rðui þ urÞ�vR dh. ð3:13Þ
Theorem 3.2. The variational problem (3.13) has a unique solution u 2 V.

Proof. The proof consists of two parts. First we show
RefbTMðu; uÞgP C1kruk2
L2ðXÞ � C2kuk2

L2ðXÞ
for some C1 > 0, C2 > 0. Secondly, we show the variational problem (3.13) can have at most one solution.
Then existence of solution follows immediately from Fredholm alternative theorem. We observe that
ReBn ¼
J nJ nþ1 þ Y nY nþ1

J 2
n þ Y 2

n

¼ n
x
� J nJ nþ1 þ Y nY nþ1

J 2
n þ Y 2

n

; ð3:14Þ

ImBn ¼
J 0nY n � J nY 0n

J 2
n þ Y 2

n

¼ �W ðJ n; Y nÞ
J 2

n þ Y 2
N

¼ � 2=px

J 2
n þ Y 2

n

; ð3:15Þ
where x = kR and Bn is as defined in (3.9). It can be shown [2], that ReBn 6 0 "n P 0 and "kR > 0, while it is
clear that ImBn 6 0. Hence we have
Re bTMðu; uÞ ¼ kruk2
L2

XR
� k2

Z
XR

Re erjuj2 dxdy �Re hT Ru; ui

¼ kruk2
L2

XR
� k2

Z
XR

Re erjuj2 dxdy � xp
2

X1
n¼1

ReBnðus
nÞ

2 P kruk2
L2ðXRÞ � k2

Z
XR

Re erjuj2 dxdy

P C1kruk2
L2ðXRÞ � C2kukL2ðXRÞ.
To prove uniqueness, assume u is a solution of (3.13) with F(v) = 0. We need only show that u ” 0. Indeed,
bTM(u,u) = 0 implies
ImbTMðu; uÞ ¼ �k2

Z
XR

Im erjuj2 dxdy � Im hT Ru; ui ¼ 0.
Note that Im er 6 0, we deduce
k2

Z
XR

jIm erj � juj2 dxdy þ px
2

X1
n¼1

2

px
1

J 2
n þ Y 2

n

ðus
nÞ

2 ¼ 0.
Hence, u ” 0. h
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3.2. TE polarization

As in the TM case, we denote u = Hz for simplicity. On the PEC ground plane, Cext, it is known that
oui

on
þ our

on
¼ 0.
In this case, the unit normal vector n̂ is in the positive y-axis. The scattered field us satisfies the following exterior

problem:
Dus þ k2us ¼ 0 in UR;

usðR; hÞ ¼ hðhÞ on BR;
ous

or ¼ 0 on Cext;

8><
>: ð3:16Þ
and the radiation condition as in (2.1).
We expand the scattered field us in UR as
usðr; hÞ ¼ 2a0H ð2Þ0 ðkrÞ þ
X1
n¼1

anH ð2Þn ðkrÞ cos nh; r P R; h 2 ½0; p�. ð3:17Þ
Here the cosine series expansion is chosen because ous

or vanishes for h = 0, p and r P R. Letting r = R and
imploring the orthogonality of the cosine functions yield
an ¼
2

pH ð2Þn ðkRÞ

Z p

0

hðhÞ cos nhdh. ð3:18Þ
By taking the partial derivative of us with respect to r, we get
ous

or
¼ 2k

p

X1
n¼0

H ð2Þ
0

n ðkrÞ
H ð2Þn ðkRÞ

cos nh
Z p

0

hðhÞ cos nhdh.
On the semicircle BR, we denote
ous

or
¼ ShðhÞ;
where S is the boundary operator
SwðhÞ ¼ 2k
p

X1
0

H ð2Þ
0

n ðkRÞ
H ð2Þn ðkRÞ

cos nh
Z p

0

wðhÞ cos nhdh;
for all w 2 H 1=2ðBRÞ.
As in the TM case, we have the following result for the operator S, whose proof is similar in nature and is

omitted here for brevity.

Lemma 3.3. The operator S : H
1
2ðBRÞ ! H�

1
2ðBRÞ is continuous.

Again, by the mapping S and continuity condition we reduce the problem (TE) defined in the infinite
domain X [U for the total magnetic field, u, to the following interior problem:
r � ðe�1
r ruÞ þ k2u ¼ 0 in XR;

ou=or � SðuÞ ¼ �Sðui þ urÞ þ oui

or þ @ur

@r on BR;

@u=on ¼ 0 on S.

8><
>: ð3:19Þ
3.3. Variational formulation

Define the variational space W = H1(XR). The variational formulation of (3.19) is to find u 2W such that
b ðu;wÞ ¼ GðwÞ for all w 2 W ; ð3:20Þ
TE
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where
bTEðu;wÞ ¼
Z

XR

ðe�1
r ru � rw� k2uwÞdxdy �

Z
BR

SðuÞe�1
r wdl

¼
Z

XR

ðe�1
r ru � rw� k2uwÞdxdy �

Z p

0

SðuÞe�1
r wR dh;

GðwÞ ¼
Z
BR

oui

or
þ our

or
� Sðui þ urÞ

� 	
e�1

r wdl

¼
Z p

0

oui

or
þ our

or
� Sðui þ urÞ

� 	
e�1

r wR dh.
Theorem 3.4. The variational problem (3.20) has a unique solution u 2W.

The proof is similar in nature to the proof for the TM case. We highlight the following.

Proof. We observe that
hSw;wi ¼ ntBR k
X1

1

Bn cos nhwc
n
�wdl ¼

Z p

0

k
X1

1

Bn cos nhwc
n
�wðhÞRdh ¼ x

X1
1

Bnwc
n

Z p

0

�wðhÞ cos nhdh

¼ xp
2

X1
1

Bnwc
n
�w

c

n.
Hence we have
RebTEðu; uÞ ¼
Z

XR

Re e�1
r jruj2 � k2juj2 dxdy �Re hSu; ui

¼
Z

XR

Re e�1
r jruj2 � k2juj2 dxdy � xp

2

X1
n¼1

ReBnðuc
nÞ

2 ¼
Z

XR

Re e�1
r jruj2 � k2juj2 dxdy

P C1kruk2
L2ðXRÞ � C2kukL2ðXRÞ.
The uniqueness proof is essentially the same as that in Theorem 3.2. h
4. Finite element analysis

The variational equations (3.11) and (3.20), of the TM and TE problems, respectively, can be numerically
solved by using finite element methods. In this section, we discuss the convergence properties of the finite element
solutions.

Let {Vh : 0 < h < 1} be a family of finite dimensional sub-spaces of V. The corresponding discrete problem
of (3.13) is: given the incident field ui, find uh 2 Vh such that
bðuh; vhÞ ¼ F ðvhÞ 8vh 2 V h. ð4:1Þ
The well-posedness of (4.1) follows immediately from Theorem 3.4.

Theorem 4.1. Let u 2 V be the unique weak solution to (3.13). Then for any given � > 0, there exists
h0 = h0(�) > 0 such that for 0 < h < h0, any solution uh 2 Vh to (4.1) satisfies
ku� uhkH1ðXRÞ ¼ Oð�Þ; ð4:2Þ
ku� uhkL2ðXRÞ ¼ Oð�2Þ. ð4:3Þ
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Remark 4.2. For a proof of the above theorem, the reader is referred to [19] Theorem 1.10.

The corresponding discrete problem of (3.20) is: given the incident field ui, find uh 2 Vh such that
bðuh; vhÞ ¼ GðvhÞ 8vh 2 V h. ð4:4Þ

The same error estimate results as in the TM case hold for the TE case. The proofs are similar in nature and
are skipped here for brevity.

5. Numerical experiments

In this section we present some numerical results for the case of an overfilled cavity where the protruding
portion is a semicircle of radius RX = 0.6 m and the interior semicircle is of radius 0.5 m. The problem geom-
etry is depicted in the contour plots, Figs. 2 and 3. The cavity is illuminated by a 300 MHz wave. In particular,
we assume ui = exa+yb and ur = �exa�yb for the TM polarization; ui = exa+yb and ur = exa�yb for the TE polar-
ization, where a = ikcos (hinc), b = ik sin (hinc), hinc is incident angle; k = 2p; �r equals 1 for free space and 4 � i

for filled media.
The characteristics of the TM and TE fields are shown in Figs. 2 and 3 for normal incidence. In both cases,

we observe a perfect symmetry. Fig. 4 shows the RCS for the TM case. We note that having the exact solution
in the exterior domain enables the efficient computation of the RCS using the analytical formulation,
rðwÞ ¼ 16

kp2
W2ðwÞ;
where
WðwÞ ¼
X1
n¼1

expðinp=2Þ sinðnwÞ
J nðkRÞ � iY nðkRÞ

Z p

0

gðhÞ sinðnhÞdh

�����
�����.
In Fig. 5, we observe a smooth linkage between the numerical solutions in the interior domain and the analytical
solutions in the exterior, indicating the reliability of our method in this aspect.

The relative errors in the L2-norm and the H1-norm are defined as
Fig. 2. Contour of magnitude of total field of TM polarization in interior domain, hinc = p/2.



Fig. 3. Contour of magnitude of total field for TE polarization in interior domain, hinc = p/2.
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Fig. 4. RCS of the overfilled cavity for TM polarization.
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errorn ¼
log2

kuAe
n
�uAe

n�1
k0

kuAe
n
k0

; for L2-norm,

log2

kuAe
n
�uAe

n�1
k1

kuAe
n
k1

; for H 1-norm,

8><
>:
where Ae
n is the average element area at the nth mesh refinement. The relative errors are plotted against the

reciprocal of the average element area 1=Ae
n in Fig. 6. As expected, we observe that the error in the H1-norm

is of order OðhÞ, versus Oðh2Þ of the L2-norm, where h is the element dimension.
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6. Conclusion

We have presented a finite element/Fourier series method for analyzing the scattering from inhomogeneous
overfilled cavities embedded in the infinite ground plane. Our results indicate that the scattering problem in both
TM and TE polarizations attains a unique weak solution for a general cavity medium. Our numerical experi-
ments further demonstrate the realizability and efficiency of the method. We believe this is the first rigorous
mathematical treatment supported by accurate numerical results of the important problem of electromagnetic
scattering by overfilled cavities, and the approach can be generalized to three-dimensional scattering problems
involving protruding cavities.
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